TANK FITNESS FOR SERVICE

CASE STUDIES

Presented by
Joel Andreani
The Equity Engineering Group, Inc.
OUTLINE

- FFS, API STDS. & APPLICATION TO TANKS
- FFS CASE 1: Pitting
- FFS CASE 2: Hydrotest Exemption
- FFS CASE 3: Distortion of Upper Courses
- FFS CASE 4: Fabrication Flaws (Weld Defects)
- FFS CASE 5: Settlement
- FFS CASE 6: Banded Tank Thinning
- FFS CASE 7: Stress Corrosion Cracking
- Conclusions
TANK FFS, API 653 & API 579

- Inspection Codes (API 510, 570, 653) recognize API 579
- API 653 Paragraph 1.1.6: recognizes API 579 to fill gaps not specifically covered in API 653, and where FFS is permitted by API 653.
- API 579 covers FFS of API 650 and 620 Tanks
- API 579 uses a Multi-level Assessment Methodology
 - Level 1: Conservative screening criteria
 - Level 2: Analyses are more detailed
 - Level 3: Most detailed. Most applicable to types of Tank Damage not in API 653.
CASE STUDY 1: PITTING

- Tank Geometry:
 - D=35’ x H=32’, A283-C, all shell courses 0.25 inches
 \(t_{\text{min}} = 0.11 \) inches
 - G=1.03, Temp = Ambient

- Damage:
 - Isolated pitting, first course, nearly through-wall.
 Failure sites in coating.
 - \(\approx 1.0 \) inch diameter pits x 0.05 inches min. remaining
 wall (less than 50% \(t_{\text{min}} \))
 - Pits several feet from Bottom
 - Doesn’t meet API 653, Section 4.0.
CASE STUDY 1: PITTING

- First: LEVEL 1 - Pit charts and pit depths
CASE STUDY 1: PITTING

- Level 2 – Determine geometry terms for Pit Couples (pitch, diameters, pit depth, angle to each other) lead to calculation of Remaining Strength Factor (RSF)

<table>
<thead>
<tr>
<th>Couple</th>
<th>P_k</th>
<th>θ_k</th>
<th>$d_{j,k}$</th>
<th>$d_{i,k}$</th>
<th>$w_{i,k}$</th>
<th>$w_{j,k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ij</td>
<td>2.550</td>
<td>78.7°</td>
<td>1.00</td>
<td>1.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>il</td>
<td>3.132</td>
<td>61.4°</td>
<td>1.00</td>
<td>1.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>jk</td>
<td>2.016</td>
<td>60.3°</td>
<td>1.00</td>
<td>1.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>jl</td>
<td>2.016</td>
<td>7.3°</td>
<td>1.00</td>
<td>1.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>lk</td>
<td>1.803</td>
<td>56.3°</td>
<td>1.00</td>
<td>1.00</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>
LEVEL 1 and 2 were not met in this case, plus there was the need to look at increasing damage scenarios.

OPTIONS:

- Repair
- Couldn’t Rerate via API 579 because at least one flaw depth criteria was not met
- LEVEL 3
CASE STUDY 1: PITTING

- LEVEL 3
 - Current FFS
 - FFS if Current Pits Enlarge and/or Deepen
 - FFS if Density in same pitting region increases
 - FFS if Region of Pitting Enlarges

- Performed FEA

- Used API 579 Appendix B Criteria (strain, limit load, stress classification per ASME S8D2)
CASE STUDY 1: PITTING

- **CURRENT CONDITION RESULTS:**
 - Current pit groups are FFS

- **FUTURE CONDITION RESULTS:**
 - FFS with 50% growth in diameter and full wall thickness (would leak before collapse)
 - Single isolated pit could grow twice the current size
 - Area of Pitting could become 30% denser
 - Proximity to Bottom was biggest influence on FFS
CASE STUDY 2: HYDROTEST EXEMPTION

- Tank Geometry:
 - D=120’ x H=37.5’, A283-C
 - G=0.70, MDMT = 37°F
 - Two Door-sheets being installed

- Purpose of Analysis:
 - FFS required to Exempt Hydrotest
 - Examine FFS of affected welds / weld NDE requirements
CASE STUDY 2: HYDROTEST EXEMPTION

Plain Door-sheet
Door-sheet with 3 nozzles ↓
CASE STUDY 2: HYDROTEST EXEMPTION

- API 579 Section 9.0
- Focus:
 - Welds to Bottom
 - Nozzle Welds
 - Edges of Door-sheet Welds
- Stresses from FEA models used in LEVEL 2 fracture calculations
- Fill and Settlement Stresses Evaluated
CASE STUDY 2: HYDROTEST EXEMPTION

- FEA Model Stresses at Nozzles:
CASE STUDY 2: HYDROTEST EXEMPTION

- FEA Model Stresses at Bottom Welds / Door-Sheets:
CASE STUDY 2: HYDROTEST EXEMPTION

- Failure Assessment Diagram (FAD) Approach from API 579
 - Judges plastic collapse
 - Judges brittle fracture

- From Stress, Toughness and Residual Stress get Critical Flaw Sizes (CFS) and/or Perform Leak Before Break (LBB) Analysis to get critical through-wall crack length.
 - Use as NDE screening tools
 - OR Evaluate Crack Opening Area (COA), Leak Rates and Consequence (with an RBI type Modeler) for LBB Results
CASE STUDY 2: HYDROTEST EXEMPTION

Figure 1A: Circumferential Surface Crack in Shell
At Toe Fillet Weld Toe Connection with Shell
No Future Tank Settlement Included
CASE STUDY 3: DISTORTED UPPER COURSES

- Section 8.0 of API 579
- Many Bulges & Distortion in Tanks will be outside of limitations of the LEVEL 1 and LEVEL 2 procedures:
 - Proximity to Welds, Discontinuities
 - Inwards profile
 - Sharp profile (Dents, Wrinkles)
 - Multiple Bulges & Distortions
CASE STUDY 3: DISTORTED UPPER COURSES

- Section 8.0 Level 1 and 2: Determine RSF from calculation of local bending due to an isolated bulge

(a) Cylinder with Bulge

(b) Section A-A

(c) Section B-B

Location of Inflection Point (Change in Local Curvature)

Copyright © 2004 E²G | The Equity Engineering Group, Inc. All Rights Reserved.
CASE STUDY 3: DISTORTED UPPER COURSES

- **Tank Geometry:**
 - D=134’ x H=48’
 - Vacuum Bottoms, Operates @ 350ºF
 - Fill Level Frequently Cycles (FATIGUE evaluation)

- **Several Bulges & Distortion**
 - Overpressure Events (several!)
 - Shell Settlement
 - Damage crossed welds
 - Buckled Inward & Outward
CASE STUDY 3: DISTORTED UPPER COURSES

Geometry & Photo of Distortion
CASE STUDY 3: DISTORTED UPPER COURSES

- API 579 Section 8.0, 9.0, Appendix B Procedures
 - Section 8.0 LEVEL 3 Bulge Evaluation
 - Section 9.0 LEVEL 2 NDE Screening Curves for cracks in welds
 - Appendix B analysis procedures to determine MFH
 - Fatigue Evaluation

- API 653 Appendix B Settlement evaluation
CASE STUDY 3: DISTORTED UPPER COURSES

- Distortion mapped on FEA
- Portion of Model and FEA Stresses
CASE STUDY 3: DISTORTED UPPER COURSES

RESULTS:
- NDE Screening Curves provided for Welds
- Reduced One Time Fill Limitation (43 feet) for an Upset
- Fatigue Life less than 30 Cycles: Limit on excursions from low fill to a maximum of 38 feet (for Normal Operation)
- Shell Settlement Close to API 653 Permissible value: Increased monitoring needed (later shell settlement became a concern when coupled with other distortion)
CASE STUDY 4: FABRICATION FLAWS

- Poor initial construction or Poor relocation reconstruction
- Several occurrences at sites E²G examined
- Small, non–petroleum industries (agriculture/fertilizer tanks)
CASE STUDY 4: FABRICATION FLAWS

- **Tank Geometry:**
 - One site had several problem Tanks (reconstructed not in accordance with API 653)
 - Basic size: D=40' x H=40'
 - Agricultural Products

- **Damage**
 - Seams with partial penetration of as little as 50% depth
 - Tee joint spacing
 - Other welds quality issues
CASE STUDY 4: FABRICATION FLAWS

- Assessment Focus was Incomplete Weld Penetration
- Treated as Crack–like flaws (API 579 Section 9.0)

- Circumferential Weld Flaw

- Longitudinal Weld Flaw
CASE STUDY 4: FABRICATION FLAWS

- Determined Tank Stresses for different fill heights (FEA would have been used if bottom weld was involved)
- Bending stress from wind also considered
- Used a FAD approach to determine FFS with crack-like weld flaws
 - If a given weld was not under the FAD (not FFS) with the fill assumptions, lowered fill height until the analysis point was under the FAD
- Used lower bound toughness, API residual stress models, API partial safety factors
 - Materials not well documented
 - Account for other uncertainties given general poor weld quality
CASE STUDY 4: FABRICATION FLAWS

- One Tank: FAD at Full Fill

Failure Assessment Diagram (FAD): 1 DPHE = 90.0000 (Degrees)
CASE STUDY 4: FABRICATION

FLAWS

- RESULTS: Same Case: FAD about 35% Full = FFS
CASE STUDY 5: TANK SETTLEMENT

- **Tank Geometry:**
 - D=40’ x H=35’
 - Fixed Roof, Single Column
 - #2 Fuel Oil

- **Damage:**
 - Edge Settlement over the API 653 Permissible Value at 3 or 4 profiles (of 12 profiles)
 - Foundation material and compaction questionable
 - Some lower shell corrosion
 - No other damage
CASE STUDY 5: TANK SETTLEMENT

- Performed more Rigorous Analyses Per API 653 based on Appendix B = FEA Stress Analysis
- Applied all 12 measured profiles
- Used Corroded Thickness, were applicable
- Examined Results based on STRAIN criteria in API 653 Appendix B (3% generally used)
- Estimated and Examined FUTURE edge settlement at worst locations – because of foundation concerns
CASE STUDY 5: TANK SETTLEMENT

- Portion of Model & Typical Displacement
CASE STUDY 5: TANK SETTLEMENT

- Typical Strain Results
CASE STUDY 5: TANK SETTLEMENT

■ RESULTS:
 – Three CURRENT Profiles were at or exceeding 3% Strain (not FFS)
 – Up to 5.8% strain predicted for one estimated future settlement profile

■ REPAIRS needed
 – Concern with foundation material – edge settlement occurring on such a light (small) tank, fairly “young” tank
 – Replace all plastically deformed sketch plate
 – Renew Foundation
CASE STUDY 5: TANK SETTLEMENT

- Shell Settlement Evaluations can also require Rigorous Analysis
- 2004 API Research Work: Revision of Appendix B
 - Difference in Open and Fixed Roof
 - Remove “Penalty” for close-spaced measurements
 - Tank Size Dependent
 - Differences in Settlement Patterns
CASE STUDY 6: BANDED TANK FFS

- Tank Geometry:
 - D=70’ x H=28’
 - Shell supports Fabric / Aluminum Geodesic Roof
 - G=1.5 (residue tank), 200 to 250°F
 - Monel: courses made thinner than required, but reinforced with numerous stiffeners and steel bands

- Damage: Thinning in upper courses
 - Needed t_{min} for each course for Inspection Plan
 - Concern for buckling: Roof weight increasing due to Product build up on roof
CASE STUDY 5: BANDED TANK FFS

- Assessment was LEVEL 3 because Geometry does not lend itself to API 653 Shell thickness calculations
- Performed FEA modeling
- Determined Corroded Thickness at Full Fill meeting an API allowable stress basis for hoop stress
 - Used API 579 Appendix B (ASME Classification Method) for Local Stresses at bands
- Calculated Elastic Shell Buckling Load (maximum roof load) in corroded condition
 - API 579 Appendix B Procedure
 - Service Margin of 3.0
CASE STUDY 6: BANDED TANK FFS

- FEA Model
CASE STUDY 6: BANDED TANK FFS

- Shell and Nozzle Stresses for t_{min} Case:
CASE STUDY 6: BANDED TANK FFS

- Buckled Shape with Roof Loads:
CASE STUDY 6: BANDED TANK FFS

- SHELL RESULTS – Inspection Screening Values:
 - t_{min} provided for all courses

<table>
<thead>
<tr>
<th>Tank Shell Course</th>
<th>Required Tmin (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0.260</td>
</tr>
<tr>
<td>R2</td>
<td>0.205</td>
</tr>
<tr>
<td>R3</td>
<td>0.180</td>
</tr>
<tr>
<td>R4</td>
<td>0.130</td>
</tr>
<tr>
<td>R5</td>
<td>0.098</td>
</tr>
<tr>
<td>R6</td>
<td>0.060</td>
</tr>
</tbody>
</table>

- Provided safe roof load – 1/3 Load when buckling would occur in thinned shell (when to clean, replace fabric)
CASE STUDY 7: STRESS CORROSION CRACKING

- Industry concern with Ethanol. Other SCC in Tanks & Spheres
- Case Study is Ammonia: Shows basic process
- Tank Geometry:
 - D=110’ x H=78’
 - API 620 R Tank (refrigerated)
 - Ammonia, G=0.68, Temp= –28°F
 - A537 Class 1, Impact Tested
- Evaluated critical flaw sizes for inspection, and remaining life
- Performed LBB, COA, Leak Rate & Consequence Modeling (RBI study often done concurrently)
CASE STUDY 7: STRESS CORROSION CRACKING

- Examined crack growth due to SCC and due to Fatigue (if an issue):

\[
\frac{da}{dt} = B(K)^n (q \times t^{q-1}) \times F(t), \quad \text{and} \quad \frac{da}{dN} = C(\Delta K)^n
\]

- Crack Growth Problem has a Load History Dependency—Need an Operating History

- FEA Stress analysis
 - Stresses at critical weld location like the bottom to shell, roof to shell, nozzles
 - A piping flexibility analysis to get loads can be crucial
CASE STUDY 7: STRESS CORROSION CRACKING

- FEA of various regions of concern
CASE STUDY 7: STRESS CORROSION CRACKING

- Performed FEA of welds to get Residual Stresses
 - More accurate than API 579 Appendix E for larger tank welds
 - Uses actual weld procedures to do Thermal Stress FEA
CASE STUDY 7: STRESS CORROSION CRACKING

- From stress history and crack growth law predicted – performed a FAD calculation for each point in time in the operating history
- Determined current crack size and critical size
- Predicted Remaining Life (time until cracks grows to CFS)
- RESULTS: Inspection recommendations
 - Interval, Critical Locations, Methods
CONCLUSIONS

- Most API 579 Methodologies are applicable to TANKS and damage to TANKS
- Specific Reference to API 579 is now made in API 653
 - Tank should be a API 620 or 650 Design
- Other FFS Issues
 - API 653 Appendix B Shell Settlement Procedure Study is Ongoing
 - NEW AREA OF CONCERN: Security – Impacts and Detonations can and are being evaluated with FFS type techniques